Comments on the approximating Hamiltonian method for imperfect boson gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 399961
(http://iopscience.iop.org/0305-4470/39/31/N01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:45

Please note that terms and conditions apply.

COMMENT

Comments on the approximating Hamiltonian method for imperfect boson gas

Thomas Jaeck
Centre de Physique Théorique, Luminy-Case 907, 13288 Marseille, Cedex 09, France
E-mail: jaeck@cpt.univ-mrs.fr

Received 26 April 2006
Published 19 July 2006
Online at stacks.iop.org/JPhysA/39/9961

Abstract

In the recent paper (Pulé J V and Zagrebnov V A 2004 The approximating Hamiltonian method for the imperfect boson gas J. Phys. A: Math. Gen. 45 3565-83) the pressure for the imperfect (mean field) boson gas is derived by a method based on the approximating Hamiltonian argument. We give some comments about this derivation.

PACS numbers: 05.30.Jp, 03.75.Hh, 03.75.Gg, 67.40.-w

1. Approximating Hamiltonian

For the reader's convenience we recall the set-up of the problem. Below we follow essentially the notations of the paper [1]. Consider a system of identical bosons of mass m enclosed in a smooth connected bounded domain $\Lambda \subset \mathbb{R}^{d}$ (of volume $|\Lambda|=V$) containing the origin of coordinates. Let $E_{0}^{\Lambda} \leqslant E_{1}^{\Lambda} \leqslant E_{2}^{\Lambda} \leqslant E_{3}^{\Lambda} \leqslant \cdots$ be the eigenvalues of $h_{\Lambda}:=-\Delta / 2 m$ on Λ with some boundary conditions and let $\left\{\phi_{l}^{\Lambda}\right\}$ with $l=0,1,2,3, \ldots$ be the corresponding eigenfunctions. Let $a_{l}:=a\left(\phi_{l}^{\Lambda}\right)$ and $a_{l}^{*}:=a^{*}\left(\phi_{l}^{\Lambda}\right)$ be the boson annihilation and creation operators respectively on the Fock space \mathcal{F}_{Λ}, satisfying $\left[a_{l}, a_{l^{\prime}}^{*}\right]=\delta_{l, l^{\prime}}$. Let T_{Λ} be the Hamiltonian of the free Bose gas, that is $T_{\Lambda}=\sum_{l=0}^{\infty} E_{l}^{\Lambda} N_{l}$, where $N_{l}=a_{l}^{*} a_{l}$. Let $N_{\Lambda}=\sum_{l=0}^{\infty} N_{l}$ be the operator corresponding to the number of particles in Λ. The Hamiltonian of interacting bosons,

$$
\begin{equation*}
H_{\Lambda}=T_{\Lambda}+\frac{a}{2 V} N_{\Lambda}^{2} \tag{1.1}
\end{equation*}
$$

with $a>0$, is known as imperfect or mean field boson gas. The grand-canonical pressure of the mean field boson model with Hamiltonian (1.1) is

$$
p_{\Lambda}(\mu)=\frac{1}{\beta V} \ln \operatorname{Tr} \exp \left\{-\beta\left(H_{\Lambda}-\mu N_{\Lambda}\right)\right\}
$$

and we put in the thermodynamic limit

$$
p(\mu)=\lim _{\Lambda \uparrow \mathbb{R}^{d}} p_{\Lambda}(\mu)
$$

Here we consider, for simplicity, the Dirichlet boundary conditions; then $\mu_{0}:=\lim _{\Lambda \uparrow \mathbb{R}^{d}} E_{0}^{\Lambda}=$ 0 . Generalization to other types of conditions is identical to that in [1]. Put $p_{0}(\mu)$ and $\rho_{0}(\mu)$ for the grand-canonical pressure and mean density respectively for the free Bose gas at chemical potential $\mu<\mu_{0}=0$, that is
$p_{0}(\mu)=-\int \ln \left(1-\mathrm{e}^{-\beta(\eta-\mu)}\right) F(\mathrm{~d} \eta) \quad$ and $\quad \rho_{0}(\mu)=\int \frac{1}{\mathrm{e}^{\beta(\eta-\mu)}-1} F(\mathrm{~d} \eta)$,
$F(\eta)$ being the integrated density of states of h_{Λ} in the limit $\Lambda \uparrow \mathbb{R}^{d}$. Let $\rho_{c}:=\lim _{\mu \rightarrow 0} \rho_{0}(\mu)$ denote the free boson gas critical density, which is bounded, if $d>2$. The main property of the mean field boson gas is resumed by

Proposition. The pressure in the thermodynamic limit $p(\mu)$ exists and is given by

$$
p(\mu)= \begin{cases}\frac{1}{2} a \rho^{2}(\mu)+p_{0}(\mu-a \rho(\mu)) & \text { if } \mu \leqslant \mu_{c} \tag{1.2}\\ \frac{\mu^{2}}{2 a}+p_{0}\left(\mu_{0}=0\right) & \text { if } \mu>\mu_{c}\end{cases}
$$

where $\mu_{c}=a \rho_{c}$ and $\rho(\mu)$ is the unique solution of the equation $\rho=\rho_{0}(\mu-a \rho)$.

It is known that this result, for special boundary conditions implying $\mu_{0}=0$, can be proved in several ways. The proof in [1] is more general than others and is based on a simple application of the approximating Hamiltonian technique. To this end they use the following auxiliary Hamiltonians for $\rho \in \mathbb{R}$ and $\eta \in \mathbb{C}$, with sources in zero mode $l=0$:

$$
H_{\Lambda}(\eta)=H_{\Lambda}+\sqrt{V}\left(\eta a_{0}^{*}+\eta^{*} a_{0}\right)
$$

and

$$
\begin{equation*}
H_{\Lambda}(\rho, \eta)=T_{\Lambda}+a \rho N-\frac{1}{2} a \rho^{2} V+\sqrt{V}\left(\eta a_{0}^{*}+\eta^{*} a_{0}\right) \tag{1.3}
\end{equation*}
$$

so that

$$
H_{\Lambda}(\eta)-H_{\Lambda}(\rho, \eta)=\frac{a}{2 V}\left(N_{\Lambda}-V \rho\right)^{2}
$$

The corresponding grand-canonical pressures are

$$
p_{\Lambda}(\eta, \mu)=\frac{1}{\beta V} \ln \operatorname{Tr} \exp \left\{-\beta\left(H_{\Lambda}(\eta)-\mu N_{\Lambda}\right)\right\}
$$

and

$$
\begin{equation*}
p_{\Lambda}(\rho, \eta, \mu)=\frac{1}{\beta V} \ln \operatorname{Tr} \exp \left\{-\beta\left(H_{\Lambda}(\rho, \eta)-\mu N_{\Lambda}\right)\right\} \tag{1.4}
\end{equation*}
$$

We can write $H_{\Lambda}(\rho, \eta)-\mu N_{\Lambda}$ in the form

$$
\begin{equation*}
H_{\Lambda}(\rho, \eta)-\mu N_{\Lambda}=\sum_{l=0}^{\infty} \epsilon_{l}^{\Lambda} a_{l}^{*} a_{l}+\sqrt{V}\left(\eta a_{0}^{*}+\eta^{*} a_{0}\right)-\frac{1}{2} a \rho^{2} V \tag{1.5}
\end{equation*}
$$

where $\epsilon_{l}^{\Lambda}(\rho, \mu):=E_{l}^{\Lambda}-\mu+a \rho$. For convergence in (1.4) one must have $E_{0}^{\Lambda}-\mu+a \rho>0$.

2. Comments

The proof of the proposition is essentially based on the following:
Lemma. If $\eta \neq 0$, then

$$
\begin{equation*}
\lim _{\Lambda \uparrow \mathbb{R}^{d}} p_{\Lambda}(\eta, \mu)=\lim _{\Lambda \uparrow \mathbb{R}^{d}} \min _{\rho \geqslant 0} p_{\Lambda}(\rho, \eta, \mu)=\lim _{\Lambda \uparrow \mathbb{R}^{d}} p_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta, \mu\right) . \tag{2.1}
\end{equation*}
$$

The aim of the present note is to show that this lemma is correct in spite of the fact that relation (2.10) used in [1] for its proof is not valid.

Proof. Lemma 1 of [1] implies that for the given parameters (β, μ, η) the minimizer $\bar{\rho}_{\Lambda}$ in (2.1) is an interior point of a finite interval $(\mu / a, K)$, where $K:=K(\beta, \mu, \eta)$). This point $\bar{\rho}_{\Lambda}$ satisfies the equation

$$
\begin{equation*}
\frac{\partial p_{\Lambda}}{\partial \rho}(\rho, \eta, \mu)=-\frac{a}{V} \sum_{l=0}^{\infty} \frac{1}{\exp \left(\beta \epsilon_{l}^{\Lambda}\right)-1}-a \frac{|\eta|^{2}}{\left(\epsilon_{0}^{\Lambda}\right)^{2}}+a \rho=0 \tag{2.2}
\end{equation*}
$$

Since in the grand-canonical state for Hamiltonian (1.3) the particle density operator has the value

$$
\begin{equation*}
\left\langle\frac{N_{\Lambda}}{V}\right\rangle_{H_{\Lambda}(\rho, \eta)}=\frac{\partial p_{\Lambda}}{\partial \mu}(\rho, \eta, \mu)=\frac{1}{V} \sum_{l=0}^{\infty} \frac{1}{\exp \left(\beta \epsilon_{l}^{\Lambda}\right)-1}+\frac{|\eta|^{2}}{\left(\epsilon_{0}^{\Lambda}\right)^{2}}, \tag{2.3}
\end{equation*}
$$

(2.2) is equivalent to the equation $\rho=\left\langle N_{\Lambda}\right\rangle_{H_{\Lambda}(\rho, \eta)} / V$. Let $\bar{\rho}_{\Lambda}:=\bar{\rho}_{\Lambda}(\mu, \eta)$ denote a solution of this equation (minimizer). Then $\lim _{\Lambda \uparrow \mathbb{R}^{d}} \bar{\rho}_{\Lambda}(\mu, \eta)=\bar{\rho}(\mu, \eta)<K$ exists and verifies the limiting equation (2.2):

$$
\begin{equation*}
\rho=\rho_{0}(\mu-a \rho)+\frac{|\eta|^{2}}{(a \rho-\mu)^{2}} \tag{2.4}
\end{equation*}
$$

Now by Bogoliubov's convexity inequality one gets

$$
\begin{equation*}
0 \leqslant p_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta, \mu\right)-p_{\Lambda}(\eta, \mu) \leqslant \frac{1}{2 V^{2}} \Delta_{\Lambda}(\eta) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{\Lambda}(\eta):=a\left\langle\left(N_{\Lambda}-\left\langle N_{\Lambda}\right\rangle_{H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right)}\right)^{2}\right\rangle_{H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right)} \tag{2.6}
\end{equation*}
$$

and as in [1] we want to obtain an estimate for $\Delta_{\Lambda}(\eta)$ in terms of V.
Comment 1. Since for $\eta \neq 0$ the commutator $\left[H_{\Lambda}\left(\rho_{\Lambda}, \eta\right), N_{\Lambda}\right] \neq 0$, we get

$$
\frac{\Delta_{\Lambda}(\eta)}{a V} \neq \frac{1}{\beta} \frac{\partial^{2} p_{\Lambda}}{\partial \mu^{2}}\left(\bar{\rho}_{\Lambda}, \eta, \mu\right)
$$

which breaks equation (2.10) in [1]. In fact, one gets for the second derivative the BogoliubovDuhamel formula, see e.g. [2]

$$
\begin{equation*}
\frac{1}{\beta} \frac{\partial^{2} p_{\Lambda}}{\partial \mu^{2}}\left(\bar{\rho}_{\Lambda}, \eta, \mu\right)=\frac{1}{V \beta} \int_{0}^{\beta} \mathrm{d} s\left\langle\tau_{s}\left(\widehat{\delta} N_{\Lambda}\right) \widehat{\delta} N_{\Lambda}\right\rangle_{H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right)} \tag{2.7}
\end{equation*}
$$

where we denote $\widehat{\delta} N_{\Lambda}:=N_{\Lambda}-\left\langle N_{\Lambda}\right\rangle_{H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right)}$ and $\tau_{s}(A):=\mathrm{e}^{s H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right)} A \mathrm{e}^{-s H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right)}$. Using (2.7) one can check that in fact we have

$$
\frac{\Delta_{\Lambda}(\eta)}{a V} \geqslant \frac{1}{\beta} \frac{\partial^{2} p_{\Lambda}}{\partial \mu^{2}}\left(\bar{\rho}_{\Lambda}, \eta, \mu\right)
$$

i.e. the second derivative with respect to the chemical potential is not very useful for estimation of the right-hand side of (2.5).

Comment 2. In this note we show that one can do a simple direct calculation to estimate $\Delta_{\Lambda}(\eta)$. To this end, we split the approximating Hamiltonian (1.3) and the difference $\widehat{\delta} N_{\Lambda}$ into terms which depend on the $(l=0)$-mode and the others:

$$
\begin{aligned}
& H_{\Lambda}\left(\bar{\rho}_{\Lambda}, \eta\right):=H_{\Lambda}^{0}\left(\bar{\rho}_{\Lambda}, \eta\right)+H_{\Lambda}^{\prime}\left(\bar{\rho}_{\Lambda}\right), \\
& \widehat{\delta} N_{\Lambda}:=\widehat{\delta} N_{\Lambda}^{0}+\widehat{\delta} N_{\Lambda}^{\prime}=N_{\Lambda}^{0}-\left\langle N_{\Lambda}^{0}\right\rangle_{H_{\Lambda}^{0}\left(\bar{\rho}_{\Lambda}, \eta\right)}+N_{\Lambda}^{\prime}-\left\langle N_{\Lambda}^{\prime}\right\rangle_{H_{\Lambda}^{\prime}\left(\bar{\rho}_{\Lambda}\right)}
\end{aligned}
$$

Then we get for (2.6)

$$
\left.\frac{1}{a} \Delta_{\Lambda}(\eta)=\left\langle\left(\widehat{\delta} N_{\Lambda}^{0}\right)^{2}\right\rangle_{H_{\Lambda}^{0}\left(\bar{\rho}_{\Lambda}, \eta\right)}+\left\langle\left(\widehat{\delta} N_{\Lambda}^{\prime}\right)^{2}\right\rangle_{H_{\Lambda}^{\prime}\left(\bar{\rho}_{\Lambda}\right)}+2 \widehat{\delta} N_{\Lambda}^{0}\right\rangle_{H_{\Lambda}^{0}\left(\bar{\rho}_{\Lambda}, \eta\right)}\left\langle\widehat{\delta} N_{\Lambda}^{\prime}\right\rangle_{H_{\Lambda}^{\prime}\left(\bar{\rho}_{\Lambda}\right)}
$$

By a standard diagonalization of $H_{\Lambda}^{0}\left(\bar{\rho}_{\Lambda}, \eta\right)$, which absorbs the linear zero-mode source terms, and after elementary calculations we obtain (cf (2.10) in [1])

$$
\begin{equation*}
\frac{1}{a V} \Delta_{\Lambda}(\eta)=\frac{1}{V} \sum_{l=0}^{\infty} \frac{\exp \left(\beta \bar{\epsilon}_{l}^{\Lambda}\right)}{\left(\exp \left(\beta \bar{\epsilon}_{l}^{\Lambda}\right)-1\right)^{2}}+\frac{|\eta|^{2}}{\left(\bar{\epsilon}_{0}^{\Lambda}\right)^{2}} \frac{\exp \left(\beta \bar{\epsilon}_{0}^{\Lambda}\right)}{\left(\exp \left(\beta \bar{\epsilon}_{0}^{\Lambda}\right)-1\right)} \tag{2.8}
\end{equation*}
$$

Here $\bar{\epsilon}_{l}^{\Lambda}:=E_{l}^{\Lambda}-\mu+a \bar{\rho}_{\Lambda} \geqslant E_{0}^{\Lambda}-\mu+a \bar{\rho}_{\Lambda}$. Since by virtue of equation (2.2) we obviously have $\bar{\rho}_{\Lambda} \geqslant|\eta|^{2} /\left(\bar{\epsilon}_{0}^{\Lambda}\right)^{2}$, this implies for $\bar{\epsilon}_{l}^{\Lambda}$ the uniform (in volume) estimate from below:

$$
\begin{equation*}
\bar{\epsilon}_{l}^{\Lambda} \geqslant \bar{\epsilon}_{0}^{\Lambda} \geqslant \frac{|\eta|}{K^{1 / 2}}=: \delta>0 \tag{2.9}
\end{equation*}
$$

for non-zero sources. Now, we can follow the same line of reasoning as in [1]. By (2.9) and by the inequality $\mathrm{e}^{x} /\left(\mathrm{e}^{x}-1\right) \leqslant 2(1+1 / x)$ for $x \geqslant 0$, we find for (2.8) the estimate from above:

$$
\begin{equation*}
\frac{1}{a V} \Delta_{\Lambda}(\eta) \leqslant 2\left(1+\frac{1}{\beta \delta}\right)\left[\frac{1}{V} \sum_{l=0}^{\infty} \frac{1}{\exp \left(\beta \epsilon_{l}^{\Lambda}\right)-1}+\frac{|\eta|^{2}}{\delta^{2}}\right] \tag{2.10}
\end{equation*}
$$

Since equations (2.2), (2.4) imply for $\eta \neq 0$ the uniform bound

$$
\begin{equation*}
\frac{1}{V} \sum_{l=0}^{\infty} \frac{1}{\exp \left(\beta \epsilon_{l}^{\Lambda}\right)-1} \leqslant \bar{\rho}_{\Lambda} \leqslant K \tag{2.11}
\end{equation*}
$$

by estimate (2.10) we get

$$
\begin{equation*}
\lim _{V \rightarrow \infty} \frac{1}{V^{2}} \Delta_{\Lambda}(\eta)=0 \tag{2.12}
\end{equation*}
$$

So, we see that this lemma stays true, independent of (2.10) in [1].

Comment 3. The rest of the proof of (1.5) is the same as in [1].

References

[1] Pulé J V and Zagrebnov V A 2004 The approximating Hamiltonian method for the imperfect boson gas J. Phys. A: Math. Gen. 45 3565-83
[2] Bratelli O and Robinson D W 2002 Operator Algebras and Quantum Statistical Mechanics vol 2, 2nd edn (Berlin: Springer)

