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Abstract
In the recent paper (Pulé J V and Zagrebnov V A 2004 The approximating
Hamiltonian method for the imperfect boson gas J. Phys. A: Math. Gen. 45
3565–83) the pressure for the imperfect (mean field) boson gas is derived by
a method based on the approximating Hamiltonian argument. We give some
comments about this derivation.

PACS numbers: 05.30.Jp, 03.75.Hh, 03.75.Gg, 67.40.−w

1. Approximating Hamiltonian

For the reader’s convenience we recall the set-up of the problem. Below we follow essentially
the notations of the paper [1]. Consider a system of identical bosons of mass m enclosed in
a smooth connected bounded domain � ⊂ R

d (of volume |�| = V ) containing the origin of
coordinates. Let E�

0 � E�
1 � E�

2 � E�
3 � · · · be the eigenvalues of h� := −�/2m on

� with some boundary conditions and let
{
φ�

l

}
with l = 0, 1, 2, 3, . . . be the corresponding

eigenfunctions. Let al := a
(
φ�

l

)
and a∗

l := a∗(φ�
l

)
be the boson annihilation and creation

operators respectively on the Fock space F�, satisfying [al, a
∗
l′ ] = δl,l′ . Let T� be the

Hamiltonian of the free Bose gas, that is T� = ∑∞
l=0 E�

l Nl , where Nl = a∗
l al . Let

N� = ∑∞
l=0 Nl be the operator corresponding to the number of particles in �. The Hamiltonian

of interacting bosons,

H� = T� +
a

2V
N2

� (1.1)

with a > 0, is known as imperfect or mean field boson gas. The grand-canonical pressure of
the mean field boson model with Hamiltonian (1.1) is

p�(µ) = 1

βV
ln Tr exp{−β(H� − µN�)},

and we put in the thermodynamic limit

p(µ) = lim
�↑R

d
p�(µ).
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Here we consider, for simplicity, the Dirichlet boundary conditions; then µ0 := lim�↑R
d E�

0 =
0. Generalization to other types of conditions is identical to that in [1]. Put p0(µ) and ρ0(µ) for
the grand-canonical pressure and mean density respectively for the free Bose gas at chemical
potential µ < µ0 = 0, that is

p0(µ) = −
∫

ln(1 − e−β(η−µ))F (dη) and ρ0(µ) =
∫

1

eβ(η−µ) − 1
F(dη),

F (η) being the integrated density of states of h� in the limit � ↑ R
d . Let ρc := limµ→0 ρ0(µ)

denote the free boson gas critical density, which is bounded, if d > 2. The main property of
the mean field boson gas is resumed by

Proposition. The pressure in the thermodynamic limit p(µ) exists and is given by

p(µ) =


1

2
aρ2(µ) + p0(µ − aρ(µ)) if µ � µc;

µ2

2a
+ p0(µ0 = 0) if µ > µc,

(1.2)

where µc = aρc and ρ(µ) is the unique solution of the equation ρ = ρ0(µ − aρ).

It is known that this result, for special boundary conditions implying µ0 = 0, can be
proved in several ways. The proof in [1] is more general than others and is based on a simple
application of the approximating Hamiltonian technique. To this end they use the following
auxiliary Hamiltonians for ρ ∈ R and η ∈ C, with sources in zero mode l = 0:

H�(η) = H� +
√

V (ηa∗
0 + η∗a0)

and

H�(ρ, η) = T� + aρN − 1
2aρ2V +

√
V (ηa∗

0 + η∗a0), (1.3)

so that

H�(η) − H�(ρ, η) = a

2V
(N� − Vρ)2.

The corresponding grand-canonical pressures are

p�(η, µ) = 1

βV
ln Tr exp{−β(H�(η) − µN�)}

and

p�(ρ, η, µ) = 1

βV
ln Tr exp{−β(H�(ρ, η) − µN�)}. (1.4)

We can write H�(ρ, η) − µN� in the form

H�(ρ, η) − µN� =
∞∑
l=0

ε�
l a∗

l al +
√

V (ηa∗
0 + η∗a0) − 1

2
aρ2V, (1.5)

where ε�
l (ρ, µ) := E�

l − µ + aρ. For convergence in (1.4) one must have E�
0 − µ + aρ > 0.
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2. Comments

The proof of the proposition is essentially based on the following:

Lemma. If η 	= 0, then

lim
�↑R

d
p�(η, µ) = lim

�↑R
d

min
ρ�0

p�(ρ, η, µ) = lim
�↑R

d
p�(ρ̄�, η, µ). (2.1)

The aim of the present note is to show that this lemma is correct in spite of the fact that relation
(2.10) used in [1] for its proof is not valid.

Proof. Lemma 1 of [1] implies that for the given parameters (β, µ, η) the minimizer ρ̄� in
(2.1) is an interior point of a finite interval (µ/a,K), where K := K(β,µ, η)). This point
ρ̄� satisfies the equation

∂p�

∂ρ
(ρ, η, µ) = − a

V

∞∑
l=0

1

exp
(
βε�

l

) − 1
− a

|η|2(
ε�

0

)2 + aρ = 0. (2.2)

Since in the grand-canonical state for Hamiltonian (1.3) the particle density operator has the
value 〈

N�

V

〉
H�(ρ,η)

= ∂p�

∂µ
(ρ, η, µ) = 1

V

∞∑
l=0

1

exp
(
βε�

l

) − 1
+

|η|2(
ε�

0

)2 , (2.3)

(2.2) is equivalent to the equation ρ = 〈N�〉H�(ρ,η)

/
V . Let ρ̄� := ρ̄�(µ, η) denote a solution

of this equation (minimizer). Then lim�↑R
d ρ̄�(µ, η) = ρ̄(µ, η) < K exists and verifies the

limiting equation (2.2):

ρ = ρ0(µ − aρ) +
|η|2

(aρ − µ)2
. (2.4)

Now by Bogoliubov’s convexity inequality one gets

0 � p�(ρ̄�, η, µ) − p�(η, µ) � 1

2V 2
��(η), (2.5)

where

��(η) := a
〈(
N� − 〈N�〉H�(ρ̄�,η)

)2〉
H�(ρ̄�,η)

, (2.6)

and as in [1] we want to obtain an estimate for ��(η) in terms of V .

Comment 1. Since for η 	= 0 the commutator [H�(ρ�, η),N�] 	= 0, we get

��(η)

aV
	= 1

β

∂2p�

∂µ2
(ρ̄�, η, µ),

which breaks equation (2.10) in [1]. In fact, one gets for the second derivative the Bogoliubov–
Duhamel formula, see e.g. [2]

1

β

∂2p�

∂µ2
(ρ̄�, η, µ) = 1

Vβ

∫ β

0
ds〈τs (̂δN�)̂δN�〉H�(ρ̄�,η), (2.7)

where we denote δ̂N� := N� − 〈N�〉H�(ρ̄�,η) and τs(A) := esH�(ρ̄�,η)A e−sH�(ρ̄�,η). Using
(2.7) one can check that in fact we have

��(η)

aV
� 1

β

∂2p�

∂µ2
(ρ̄�, η, µ),
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i.e. the second derivative with respect to the chemical potential is not very useful for estimation
of the right-hand side of (2.5).

Comment 2. In this note we show that one can do a simple direct calculation to estimate
��(η). To this end, we split the approximating Hamiltonian (1.3) and the difference δ̂N� into
terms which depend on the (l = 0)-mode and the others:

H�(ρ̄�, η) := H 0
�(ρ̄�, η) + H ′

�(ρ̄�),

δ̂N� := δ̂N0
� + δ̂N ′

� = N0
� − 〈

N0
�

〉
H 0

�(ρ̄�,η)
+ N ′

� − 〈N ′
�〉H ′

�(ρ̄�).

Then we get for (2.6)

1

a
��(η) = 〈(̂

δN0
�

)2〉
H 0

�(ρ̄�,η)
+

〈(̂
δN ′

�

)2〉
H ′

�(ρ̄�)
+ 2

〈̂
δN0

�

〉
H 0

�(ρ̄�,η)
〈̂δN ′

�〉H ′
�(ρ̄�).

By a standard diagonalization of H 0
�(ρ̄�, η), which absorbs the linear zero-mode source terms,

and after elementary calculations we obtain (cf (2.10) in [1])

1

aV
��(η) = 1

V

∞∑
l=0

exp
(
βε�

l

)(
exp

(
βε�

l

) − 1
)2 +

|η|2(
ε�

0

)2

exp
(
βε�

0

)(
exp

(
βε�

0

) − 1
) . (2.8)

Here ε�
l := E�

l − µ + aρ̄� � E�
0 − µ + aρ̄�. Since by virtue of equation (2.2) we obviously

have ρ̄� � |η|2/(
ε�

0

)2
, this implies for ε�

l the uniform (in volume) estimate from below:

ε�
l � ε�

0 � |η|
K1/2

=: δ > 0 (2.9)

for non-zero sources. Now, we can follow the same line of reasoning as in [1]. By (2.9) and
by the inequality ex/(ex − 1) � 2(1 + 1/x) for x � 0, we find for (2.8) the estimate from
above:

1

aV
��(η) � 2

(
1 +

1

βδ

) [
1

V

∞∑
l=0

1

exp
(
βε�

l

) − 1
+

|η|2
δ2

]
. (2.10)

Since equations (2.2), (2.4) imply for η 	= 0 the uniform bound

1

V

∞∑
l=0

1

exp
(
βε�

l

) − 1
� ρ� � K, (2.11)

by estimate (2.10) we get

lim
V →∞

1

V 2
��(η) = 0. (2.12)

So, we see that this lemma stays true, independent of (2.10) in [1]. �

Comment 3. The rest of the proof of (1.5) is the same as in [1].
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